Optimal Model on Canal water Distribution Based on Dynamic Penalty Function and Genetic Algorithm
نویسندگان
چکیده
The present optimal water delivery scheduling models are based on the assumed equal design discharges of lateral canals, which are not in accordance with practical water delivery scheduling demand in most irrigation systems. In order to solve this problem, a model of lateral canals with unequal discharges and a solution method were proposed; At present, traditional fixed penalty factor have some problem, such as it is difficulty to use unified dimension and to get a higher searching precision, besides, it prematurely converge to local optimal solution. Therefore, the thought of simulated annealing was referred to design a dynamic penalty function. In the progress of genetic operation, the SGA (Simple Genetic Algorithm) adopted adaptive crossover mutation method, and compared distinct solutions of model which based on the method in this paper, Adaptive genetic algorithm (AGA) and traditional methods used in irrigation district widely respectively. Comparing with water delivery plan compiled using traditional methods, the results illustrate that using this method can get much more reasonable lateral canals water delivery time and homogeneous discharges of upper canal. AGA can adjust the genetic controlling parameters automatically on the basis of values of individual fitness and degree of population dispersion, and get a high precision solution. So it has a higher practical value in irrigation system management.
منابع مشابه
Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملEconomic Evaluation of Optimal Capacitor Placement in Reconfiguration Distribution System Using Genetic Algorithm
Optimal capacitor placement, considering power system loss reduction, voltage profile improvement, line reactive power decrease and power factor correction, is of particular importance in power system planning and control. The distribution system operator calculates the optimal place, number and capacity of capacitors based on two major purposes: active power loss reduction and return on invest...
متن کاملA SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems
In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...
متن کاملOPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEM USING CENTRAL FORCE OPTIMIZATION AND DIFFERENTIAL EVOLUTION
For any agency dealing with the design of the water distribution network, an economic design will be an objective. In this research, Central Force Optimization (CFO) and Differential Evolution (DE) algorithm were used to optimize Ismail Abad water Distribution network. Optimization of the network has been evaluated by developing an optimization model based on CFO and DE algorithm in MATLAB and ...
متن کاملبرآورد پارامترهای معادله ماسکینگام غیرخطی در مدل روندیابی سیلاب با استفاده از الگوریتم چرخه آب
Flood routing in river is one of important issues in water engineering projects. Hydraulic routing is common in especially in river that has branches and river that have not basin information. So as to need obtain cross section and slops in all interval of river that Muskingum helps by saving time and cost. In this paper, a Water Cycle Algorithm (WCA) is proposed for the parameter estimation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008